Graph and tree algorithms cheat sheet

0. Core Setup: Graph Representations

Adjacency List (sparse graphs - most common)

from collections import defaultdict

graph = defaultdict( )

def (u, v, w=1, undirected=False):
graph[u].append((v, w))
if undirected:
graph[v].append((u, w))

Space: 0(n + m)
Use for: almost everything (BFS/DFS, Dijkstra, MST, etc.)

Adjacency Matrix (dense graphs / small n)

INF = (‘inf')

n=>5

mat = [[INF]*n for _ in (n)]
for 1 in (n):

mat[i][1] = ©

def (u, v, w=1, undirected=False):
mat[u][v] = (mat[u][v], w)
if undirected:
mat[v][u] = (mat[v][ul, w)

Space: 0(n?)
Use for: Floyd—Warshall, dense graphs, or n = 500 kind of problems.

1. Breadth-First Search (BFS)
Classic BFS (unweighted shortest path)



from collections import deque

def (start, graph):
dist = {start: 0}
parent = {start: None}
dqg = deque([start])

while dq:
u = dq.popleft()
for v, _ in graph[u]:
if v not in dist:
dist[v] = dist[u] + 1
parent[v] = u
dq.append(v)
return dist, parent

Time: 0(n + m)

Use for:
Shortest path with equal weights (e.g., edges cost 1).
Level-order traversal, computing distances in unweighted graphs.

Pattern: Multi-source BFS

Start from multiple nodes simultaneously.

def (starts, graph):
from collections import deque
dg = deque()
dist = {}
for s in starts:
dist[s] = 0
dg.append(s)
while dq:
u = dq.popleft()
for v, _ in graph[u]:

if v not in dist:
dist[v] = dist[u] + 1
dg.append(v)
return dist

Use for: nearest special node, distance to closest shop/hospital, etc.

Pattern: 0-1 BFS (edges with weight 0 or 1)



from collections import deque

def (start, graph):
dist = {start: 0}
dg = deque([start])

while dq:
u = dq.popleft()
for v, w in graphfu]:
nd = dist[u] + w
if v not in dist or nd < dist[v]:
dist[v] = nd
if w == 0:
dq.appendleft(v)
else:

dg.append(v)
return dist

Time: 0(n + m)

Use for: grids with 0/1 cost, binary transformations, etc.

2. Depth-First Search (DFS)

Iterative DFS (avoids recursion limit)

def (start, graph):
visited = ()
parent = {start: None}
stack = [start]

while stack:
u = stack.pop()
if u in visited:
continue
visited.add(u)
for v, _ in (graphfu]):

if v not in visited:
parent[v] = u
stack.append(v)
return visited, parent



Time: 0(n + m)

Use for: connectivity, topological sort, cycle detection, etc.

Pattern: Connected Components (Undirected)

def (nodes, graph):
visited = ()
comps = []

for s in nodes:
if s in visited:

continue
stack = [s]
comp = []

while stack:
u = stack.pop()
if u in visited:
continue
visited.add(u)
comp.append(u)
for v, _ in graph[u]:
if v not in visited:
stack.append(v)
comps.append(comp)
return comps

3. Shortest Paths

Dijkstra (non-negative weights)

import heapq

def (start, graph):
dist = {start: 0}
parent = {start: None}
pg = [(0, start)]

while pq:
d, u = heapq.heappop(pq)
if d != dist[u]:
continue
for v, w in graph[u]:



nd =d+ w
if v not in dist or nd < dist[v]:
dist[v] = nd
parent[v] = u
heapq.heappush(pg, (nd, v))
return dist, parent

Time: 0(m log n)
Use for: positive edge weights, single-source shortest paths.

Pattern: Reconstructing the Path

def (parent, target):

if target not in parent:
return None

path = []

cur = target

while cur is not None:
path.append(cur)
cur = parent[cur]

return path[::-1]

Bellman-Ford (handles negative weights, detects negative
cycles)

def (n, edges, start):
INF = ("inf")
dist = [INF] * n
dist[start] = 0
for _ in (n - 1):
updated = False
for u, v, w in edges:
if dist[u] !'= INF and dist[u] + w < dist[v]:

dist[v] = dist[u] + w
updated = True
if not updated:
break

in neg cycle = [False] * n
for _ in (1):
for u, v, w in edges:



if dist[u] '= INF and dist[u] + w < dist[v]:
dist[v] -INF
in neg cycle[v] = True

return dist, in neg cycle

Time: 0(nm)

Use for: negative edges, but no negative cycles reachable from source.

Floyd-Warshall (all-pairs shortest path)

def (mat) :

n = (mat)
for k in (n):
for i in (n):
if mat[i][k] == ("inf'):
continue
for j in (n):
if mat[Kk][j] == ('inf'):
continue
if mat[i][k] + mat[k][j] < mat[i][j]:
mat[i][j] = mat[i][K] + mat[k][j]
return mat

Time: 0(n3)

Use for: dense graphs, all-pairs shortest paths, or when n is small.

4. Minimum Spanning Tree (MST) — Undirected,
Connected

Disjoint Set Union (Union-Find)

class
def (self, n):
self.parent = ( (n))
self.rank = [0]*n
def (self, x):

while self.parent[x] != x:
self.parent[x] = self.parent[self.parent[x]]



x = self.parent[x]

return x

def (self, x, y):
xr, yr = self.find(x), self.find(y)
if xr == yr:

return False

if self.rank[xr] < self.rank[yr]:
Xr, yr = yr, Xr

self.parent[yr] = xr

if self.rank[xr] == self.rank[yr]:
self.rank[xr] += 1

return True

Kruskal’s Algorithm

def

(n, edges):

edges.sort()
dsu = DSU(n)
mst weight = 0
mst edges = []
for w, u, v in edges:
if dsu.union(u, v):

mst weight += w

mst edges.append((u, v, w))
return mst weight, mst edges

Time: 0(m log m)

Use for: static edge list; easy and fast.

Prim’s Algorithm (with heap)

import heapq
from collections import defaultdict

def

(start, graph, n):
visited = [False]*n
pg = [(0, start, -1)]
mst weight = 0
mst edges = []

while pg and (mst _edges) < n - 1:



w, u, p = heapq.heappop(pq)
if visited[u]:
continue
visited[u] = True
mst weight += w
if p !'= -1:
mst _edges.append((p, u, w))
for v, vw in graph[u]:
if not visited[v]:
heapq.heappush(pqg, (vw, v, u))

return mst weight, mst edges

Time: 0(m log n)

5. DAG Algorithms (Directed Acyclic Graphs)

Topological Sort (Kahn’s Algorithm — BFS with indegree)

from collections import deque, defaultdict

def

(nodes, graph):
indeg = defaultdict( )
for u in nodes:

for v, _ in graph[u]:
indeg[v] += 1

dg = deque([u for u in nodes if indeg[u] == 0])
order = []

while dq:
u = dq.popleft()
order.append(u)
for v, _ in graph[u]:
indeg[v] -=1
if indeg[v] == 0:
dq.append(v)

if (order) !I= (nodes) :
raise ValueError("Graph has a cycle")
return order



Use for: course scheduling, DP on DAG, dependency resolution.

Longest Path in a DAG (weights can be positive)

def (nodes, graph, topo order, src):

dist = {u: ('"-inf') for u in nodes}
dist[src] = 0

for u in topo_order:
if dist[u] == ('-inf'):
continue
for v, w in graph[u]:
if dist[u] + w > dist[v]:
dist[v] = dist[u] + w
return dist

6. Strongly Connected Components (SCC) - Directed

Graph
Kosaraju’s Algorithm (two DFS passes)

from collections import defaultdict
def (nodes, graph):

rgraph = defaultdict( )
for u in nodes:
for v, _ in graph[u]:
rgraph[v].append(u)

visited = ()
order = []
def (start):

stack = [start]
it stack = [ (graph[start])]
visited.add(start)
while stack:
u = stack[-1]
for v, _ in it stack[-1]:



if v not in visited:
visited.add(v)
stack.append(v)
it stack.append( (graph[v]))
break

else:

order.append(u)

stack.pop()

it stack.pop()

for u in nodes:
if u not in visited:
dfsl(u)

visited.clear()
comps = []

def (start):
stack = [start]
comp = []
visited.add(start)
while stack:
u = stack.pop()
comp.append(u)
for v in rgraph[u]:
if v not in visited:
visited.add(v)
stack.append(v)
return comp

for u in (order):
if u not in visited:
comps .append(dfs2(u))

return comps

Use for: condensation of graph into DAG, finding cycles, 2-SAT.

7. Lowest Common Ancestor (LCA) - Tree Pattern

Preprocessing via Binary Lifting



import math
from collections import deque

def (root, n, tree):
LOG = math.ceil(math.log2(n+1))
up = [[-1]*n for _ in (LOG) ]

depth = [0]*n

dg = deque([root])
parent = [-1]*n
parent[root] = -1
while dq:
u = dq.popleft()
for v, in treelu]:
if v == parent[u]:
continue
parent[v] = u
depth[v] = depth[u] + 1
dq.append(v)

for v in (n):

up[0][v] = parent[v] if parent[v] != -1 else v
for k in (1, LOG):

for v in (n):

up[k][v] = up[k-1][up[k-1]1[v]]
return up, depth, LOG

def (u, v, up, depth, LOG):
if depth[u] < depth[v]:
u, v=yv, u

diff = depth[u] - depth[v]
for k in (LOG) :
if diff & (1 << k):
u = up[k][u]

if u == v:

return u

for k in ( (LOG)):
if up[k]l[ul !'= up[k]l[v]:



c
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up[k][u]
up[k][v]

<
]

return up[0][u]

Preprocessing: 0(n log n)

Query: 0(log n)

8. Common Graph Problem Patterns
1. Grid as Graph

Index (r, c) as node, edges to neighbours.

def (r, ¢, R, C):
for dr, dc in [(-1,0),(1,0),(0,-1),(0,1)]:
nr, nc = r+dr, c+dc
if ®© <= nr <R and 0 <= nc < C:
yield nr, nc

Apply BFS/DFS/Dijkstra over (r, c) states.

2. Graph + State (multi-dimensional BFS/shortest path)

Node is (position, extra state) —e.g., (node, used coupon) .

from collections import deque
def (start state, transitions):

dg = deque([start state])
dist = {start state: 0}

while dq:
s = dq.popleft()
for ns in transitions(s):
if ns not in dist:
dist[ns] = dist[s] + 1



dg.append(ns)
return dist

3. Topological DP Pattern

Compute topo order.

Process in topological order, update DP for outgoing edges.

def (nodes, graph, topo order, base):
dp = {u: base(u) for u in nodes}
for u in topo_order:
for v, w in graph[u]:

dplv] = (dplv], dp[u] + w)
return dp

4. Cycle Detection

Undirected: if you see a visited neighbour that is not parent, there is a cycle.

Directed: DFS with 3-color marking (O = unvisited, 1 = visiting, 2 = done).

def (nodes, graph):
color = {u: 0 for u in nodes}

def (u):
color[u] =1
for v, _ in graph[u]:
if color[v] == 1:
return True
if color[v] == 0 and dfs(v):
return True
colorfu] = 2
return False

return (color[u] == 0 and dfs(u) for u in nodes)

9. Quick “When to Use What” Table



Problem Type

Reachability / any path?

Shortest path, all edges same weight
Shortest path, non-negative weights

Shortest path, may contain negative
weights

All-pairs shortest path, small dense graph
Network with 0/1 edge weights

Grouping connected nodes (undirected)
Minimum spanning tree (undirected)
Scheduling / ordering with dependencies

Strongly connected clusters in directed
graph

LCA / distance queries in tree
Grid mazes / maps

Two or more constraints / toggles

Typical Algorithm | Pattern
DFS/BFS

BFS / multi-source BFS

Dijkstra (heap)

Bellman—Ford / Johnson / DP on DAG

Floyd—Warshall

0-1 BFS

DFS/BFS components / DSU
Kruskal (DSU) / Prim (heap)
Topological Sort

Kosaraju / Tarjan SCC

Binary Lifting / Euler Tour + RMQ
BFS / Dijkstra on grid graph

State-space BFS or Dijkstra on (node,
state)



