
Graph and tree algorithms cheat sheet
0. Core Setup: Graph Representations
Adjacency List (sparse graphs – most common)

Adjacency Matrix (dense graphs / small n)

1. Breadth-First Search (BFS)
Classic BFS (unweighted shortest path)

from collections import defaultdict

Directed or undirected depending on whether you add both ways

graph = defaultdict(list) # node -> list[(neighbor, weight)]

def add_edge(u, v, w=1, undirected=False):

 graph[u].append((v, w))

 if undirected:

 graph[v].append((u, w))

Space: O(n + m)
Use for: almost everything (BFS/DFS, Dijkstra, MST, etc.)

INF = float('inf')

n = 5

mat = [[INF]*n for _ in range(n)]

for i in range(n):

 mat[i][i] = 0

def add_edge_matrix(u, v, w=1, undirected=False):

 mat[u][v] = min(mat[u][v], w)

 if undirected:

 mat[v][u] = min(mat[v][u], w)

Space: O(n²)
Use for: Floyd–Warshall, dense graphs, or n ≤ 500 kind of problems.

Pattern: Multi-source BFS
Start from multiple nodes simultaneously.

Pattern: 0–1 BFS (edges with weight 0 or 1)

from collections import deque

def bfs(start, graph):

 dist = {start: 0}

 parent = {start: None}

 dq = deque([start])

 while dq:

 u = dq.popleft()

 for v, _ in graph[u]: # ignore weights

 if v not in dist:

 dist[v] = dist[u] + 1

 parent[v] = u

 dq.append(v)

 return dist, parent

Time: O(n + m)
Use for:

Shortest path with equal weights (e.g., edges cost 1).

Level-order traversal, computing distances in unweighted graphs.

def multi_source_bfs(starts, graph):

 from collections import deque

 dq = deque()

 dist = {}

 for s in starts:

 dist[s] = 0

 dq.append(s)

 while dq:

 u = dq.popleft()

 for v, _ in graph[u]:

 if v not in dist:

 dist[v] = dist[u] + 1

 dq.append(v)

 return dist

Use for: nearest special node, distance to closest shop/hospital, etc.

2. Depth-First Search (DFS)
Iterative DFS (avoids recursion limit)

from collections import deque

def zero_one_bfs(start, graph):

 dist = {start: 0}

 dq = deque([start])

 while dq:

 u = dq.popleft()

 for v, w in graph[u]:

 nd = dist[u] + w

 if v not in dist or nd < dist[v]:

 dist[v] = nd

 if w == 0:

 dq.appendleft(v)

 else:

 dq.append(v)

 return dist

Time: O(n + m)
Use for: grids with 0/1 cost, binary transformations, etc.

def dfs_iter(start, graph):

 visited = set()

 parent = {start: None}

 stack = [start]

 while stack:

 u = stack.pop()

 if u in visited:

 continue

 visited.add(u)

 for v, _ in reversed(graph[u]): # reversed = DFS order similar to

recursive

 if v not in visited:

 parent[v] = u

 stack.append(v)

 return visited, parent

Pattern: Connected Components (Undirected)

3. Shortest Paths
Dijkstra (non-negative weights)

Time: O(n + m)
Use for: connectivity, topological sort, cycle detection, etc.

def connected_components(nodes, graph):

 visited = set()

 comps = []

 for s in nodes:

 if s in visited:

 continue

 stack = [s]

 comp = []

 while stack:

 u = stack.pop()

 if u in visited:

 continue

 visited.add(u)

 comp.append(u)

 for v, _ in graph[u]:

 if v not in visited:

 stack.append(v)

 comps.append(comp)

 return comps

import heapq

def dijkstra(start, graph):

 dist = {start: 0}

 parent = {start: None}

 pq = [(0, start)] # (dist, node)

 while pq:

 d, u = heapq.heappop(pq)

 if d != dist[u]: # stale entry

 continue

 for v, w in graph[u]:

Pattern: Reconstructing the Path

Bellman–Ford (handles negative weights, detects negative
cycles)

 nd = d + w

 if v not in dist or nd < dist[v]:

 dist[v] = nd

 parent[v] = u

 heapq.heappush(pq, (nd, v))

 return dist, parent

Time: O(m log n)
Use for: positive edge weights, single-source shortest paths.

def reconstruct_path(parent, target):

 if target not in parent:

 return None

 path = []

 cur = target

 while cur is not None:

 path.append(cur)

 cur = parent[cur]

 return path[::-1]

def bellman_ford(n, edges, start):

 # edges: list of (u, v, w)

 INF = float('inf')

 dist = [INF] * n

 dist[start] = 0

 for _ in range(n - 1):

 updated = False

 for u, v, w in edges:

 if dist[u] != INF and dist[u] + w < dist[v]:

 dist[v] = dist[u] + w

 updated = True

 if not updated:

 break

 # detect negative cycles

 in_neg_cycle = [False] * n

 for _ in range(1): # one more relaxation is enough to detect

 for u, v, w in edges:

Floyd–Warshall (all-pairs shortest path)

4. Minimum Spanning Tree (MST) – Undirected,
Connected
Disjoint Set Union (Union-Find)

 if dist[u] != INF and dist[u] + w < dist[v]:

 dist[v] = -INF

 in_neg_cycle[v] = True

 return dist, in_neg_cycle

Time: O(nm)
Use for: negative edges, but no negative cycles reachable from source.

def floyd_warshall(mat):

 # mat[i][j] initialized with INF or weights, mat[i][i] = 0

 n = len(mat)

 for k in range(n):

 for i in range(n):

 if mat[i][k] == float('inf'):

 continue

 for j in range(n):

 if mat[k][j] == float('inf'):

 continue

 if mat[i][k] + mat[k][j] < mat[i][j]:

 mat[i][j] = mat[i][k] + mat[k][j]

 return mat

Time: O(n³)
Use for: dense graphs, all-pairs shortest paths, or when n is small.

class DSU:

 def __init__(self, n):

 self.parent = list(range(n))

 self.rank = [0]*n

 def find(self, x):

 while self.parent[x] != x:

 self.parent[x] = self.parent[self.parent[x]]

Kruskal’s Algorithm

Prim’s Algorithm (with heap)

 x = self.parent[x]

 return x

 def union(self, x, y):

 xr, yr = self.find(x), self.find(y)

 if xr == yr:

 return False

 if self.rank[xr] < self.rank[yr]:

 xr, yr = yr, xr

 self.parent[yr] = xr

 if self.rank[xr] == self.rank[yr]:

 self.rank[xr] += 1

 return True

def kruskal_mst(n, edges):

 # edges: list of (w, u, v)

 edges.sort()

 dsu = DSU(n)

 mst_weight = 0

 mst_edges = []

 for w, u, v in edges:

 if dsu.union(u, v):

 mst_weight += w

 mst_edges.append((u, v, w))

 return mst_weight, mst_edges

Time: O(m log m)
Use for: static edge list; easy and fast.

import heapq

from collections import defaultdict

def prim_mst(start, graph, n):

 visited = [False]*n

 pq = [(0, start, -1)] # (weight, node, parent)

 mst_weight = 0

 mst_edges = []

 while pq and len(mst_edges) < n - 1:

5. DAG Algorithms (Directed Acyclic Graphs)
Topological Sort (Kahn’s Algorithm – BFS with indegree)

 w, u, p = heapq.heappop(pq)

 if visited[u]:

 continue

 visited[u] = True

 mst_weight += w

 if p != -1:

 mst_edges.append((p, u, w))

 for v, vw in graph[u]:

 if not visited[v]:

 heapq.heappush(pq, (vw, v, u))

 return mst_weight, mst_edges

Time: O(m log n)

from collections import deque, defaultdict

def topo_sort(nodes, graph):

 indeg = defaultdict(int)

 for u in nodes:

 for v, _ in graph[u]:

 indeg[v] += 1

 dq = deque([u for u in nodes if indeg[u] == 0])

 order = []

 while dq:

 u = dq.popleft()

 order.append(u)

 for v, _ in graph[u]:

 indeg[v] -= 1

 if indeg[v] == 0:

 dq.append(v)

 if len(order) != len(nodes):

 raise ValueError("Graph has a cycle")

 return order

Longest Path in a DAG (weights can be positive)

6. Strongly Connected Components (SCC) – Directed
Graph
Kosaraju’s Algorithm (two DFS passes)

Use for: course scheduling, DP on DAG, dependency resolution.

def longest_path_in_dag(nodes, graph, topo_order, src):

 # graph: u -> list of (v, w)

 dist = {u: float('-inf') for u in nodes}

 dist[src] = 0

 for u in topo_order:

 if dist[u] == float('-inf'):

 continue

 for v, w in graph[u]:

 if dist[u] + w > dist[v]:

 dist[v] = dist[u] + w

 return dist

from collections import defaultdict

def kosaraju_scc(nodes, graph):

 # build reverse graph

 rgraph = defaultdict(list)

 for u in nodes:

 for v, _ in graph[u]:

 rgraph[v].append(u)

 visited = set()

 order = []

 # 1st pass: order by finish time

 def dfs1(start):

 stack = [start]

 it_stack = [iter(graph[start])]

 visited.add(start)

 while stack:

 u = stack[-1]

 for v, _ in it_stack[-1]:

7. Lowest Common Ancestor (LCA) – Tree Pattern
Preprocessing via Binary Lifting

 if v not in visited:

 visited.add(v)

 stack.append(v)

 it_stack.append(iter(graph[v]))

 break

 else:

 order.append(u)

 stack.pop()

 it_stack.pop()

 for u in nodes:

 if u not in visited:

 dfs1(u)

 # 2nd pass: on reversed graph

 visited.clear()

 comps = []

 def dfs2(start):

 stack = [start]

 comp = []

 visited.add(start)

 while stack:

 u = stack.pop()

 comp.append(u)

 for v in rgraph[u]:

 if v not in visited:

 visited.add(v)

 stack.append(v)

 return comp

 for u in reversed(order):

 if u not in visited:

 comps.append(dfs2(u))

 return comps

Use for: condensation of graph into DAG, finding cycles, 2-SAT.

import math

from collections import deque

def build_lca(root, n, tree):

 LOG = math.ceil(math.log2(n+1))

 up = [[-1]*n for _ in range(LOG)]

 depth = [0]*n

 # BFS to compute depth and immediate parent

 dq = deque([root])

 parent = [-1]*n

 parent[root] = -1

 while dq:

 u = dq.popleft()

 for v, _ in tree[u]:

 if v == parent[u]:

 continue

 parent[v] = u

 depth[v] = depth[u] + 1

 dq.append(v)

 for v in range(n):

 up[0][v] = parent[v] if parent[v] != -1 else v

 for k in range(1, LOG):

 for v in range(n):

 up[k][v] = up[k-1][up[k-1][v]]

 return up, depth, LOG

def lca(u, v, up, depth, LOG):

 if depth[u] < depth[v]:

 u, v = v, u

 # Lift u up

 diff = depth[u] - depth[v]

 for k in range(LOG):

 if diff & (1 << k):

 u = up[k][u]

 if u == v:

 return u

 # Lift both up until parents differ

 for k in reversed(range(LOG)):

 if up[k][u] != up[k][v]:

8. Common Graph Problem Patterns
1. Grid as Graph
Index (r, c) as node, edges to neighbours.

Apply BFS/DFS/Dijkstra over (r, c) states.

2. Graph + State (multi-dimensional BFS/shortest path)

Node is (position, extra_state) – e.g., (node, used_coupon) .

 u = up[k][u]

 v = up[k][v]

 return up[0][u]

Preprocessing: O(n log n)
Query: O(log n)

def grid_neighbors(r, c, R, C):

 for dr, dc in [(-1,0),(1,0),(0,-1),(0,1)]:

 nr, nc = r+dr, c+dc

 if 0 <= nr < R and 0 <= nc < C:

 yield nr, nc

from collections import deque

def bfs_state(start_state, transitions):

 # transitions(state) -> iterable of next_state

 dq = deque([start_state])

 dist = {start_state: 0}

 while dq:

 s = dq.popleft()

 for ns in transitions(s):

 if ns not in dist:

 dist[ns] = dist[s] + 1

3. Topological DP Pattern

4. Cycle Detection

9. Quick “When to Use What” Table

 dq.append(ns)

 return dist

Compute topo_order .

Process in topological order, update DP for outgoing edges.

def dag_dp(nodes, graph, topo_order, base):

 dp = {u: base(u) for u in nodes}

 for u in topo_order:

 for v, w in graph[u]:

 dp[v] = max(dp[v], dp[u] + w)

 return dp

Undirected: if you see a visited neighbour that is not parent, there is a cycle.

Directed: DFS with 3-color marking (0 = unvisited, 1 = visiting, 2 = done).

def has_cycle_directed(nodes, graph):

 color = {u: 0 for u in nodes} # 0=unvisited,1=visiting,2=done

 def dfs(u):

 color[u] = 1

 for v, _ in graph[u]:

 if color[v] == 1:

 return True

 if color[v] == 0 and dfs(v):

 return True

 color[u] = 2

 return False

 return any(color[u] == 0 and dfs(u) for u in nodes)

Problem Type Typical Algorithm / Pattern

Reachability / any path? DFS / BFS

Shortest path, all edges same weight BFS / multi-source BFS

Shortest path, non-negative weights Dijkstra (heap)

Shortest path, may contain negative
weights

Bellman–Ford / Johnson / DP on DAG

All-pairs shortest path, small dense graph Floyd–Warshall

Network with 0/1 edge weights 0–1 BFS

Grouping connected nodes (undirected) DFS/BFS components / DSU

Minimum spanning tree (undirected) Kruskal (DSU) / Prim (heap)

Scheduling / ordering with dependencies Topological Sort

Strongly connected clusters in directed
graph

Kosaraju / Tarjan SCC

LCA / distance queries in tree Binary Lifting / Euler Tour + RMQ

Grid mazes / maps BFS / Dijkstra on grid graph

Two or more constraints / toggles State-space BFS or Dijkstra on (node,
state)

