
Graph and tree algorithms cheat sheet
0. Core Setup: Graph Representations
Adjacency List (sparse graphs – most common)

Adjacency Matrix (dense graphs / small n)

1. Breadth-First Search (BFS)
Classic BFS (unweighted shortest path)

from collections import defaultdict

# Directed or undirected depending on whether you add both ways

graph = defaultdict(list)  # node -> list[(neighbor, weight)]

def add_edge(u, v, w=1, undirected=False):

    graph[u].append((v, w))

    if undirected:

        graph[v].append((u, w))

Space: O(n + m)
Use for: almost everything (BFS/DFS, Dijkstra, MST, etc.)

INF = float('inf')

n = 5

mat = [[INF]*n for _ in range(n)]

for i in range(n):

    mat[i][i] = 0

def add_edge_matrix(u, v, w=1, undirected=False):

    mat[u][v] = min(mat[u][v], w)

    if undirected:

        mat[v][u] = min(mat[v][u], w)

Space: O(n²)
Use for: Floyd–Warshall, dense graphs, or n ≤ 500  kind of problems.



Pattern: Multi-source BFS
Start from multiple nodes simultaneously.

Pattern: 0–1 BFS (edges with weight 0 or 1)

from collections import deque

def bfs(start, graph):

    dist = {start: 0}

    parent = {start: None}

    dq = deque([start])

    while dq:

        u = dq.popleft()

        for v, _ in graph[u]:  # ignore weights

            if v not in dist:

                dist[v] = dist[u] + 1

                parent[v] = u

                dq.append(v)

    return dist, parent

Time: O(n + m)
Use for:

Shortest path with equal weights (e.g., edges cost 1).

Level-order traversal, computing distances in unweighted graphs.

def multi_source_bfs(starts, graph):

    from collections import deque

    dq = deque()

    dist = {}

    for s in starts:

        dist[s] = 0

        dq.append(s)

    while dq:

        u = dq.popleft()

        for v, _ in graph[u]:

            if v not in dist:

                dist[v] = dist[u] + 1

                dq.append(v)

    return dist

Use for: nearest special node, distance to closest shop/hospital, etc.



2. Depth-First Search (DFS)
Iterative DFS (avoids recursion limit)

from collections import deque

def zero_one_bfs(start, graph):

    dist = {start: 0}

    dq = deque([start])

    while dq:

        u = dq.popleft()

        for v, w in graph[u]:

            nd = dist[u] + w

            if v not in dist or nd < dist[v]:

                dist[v] = nd

                if w == 0:

                    dq.appendleft(v)

                else:

                    dq.append(v)

    return dist

Time: O(n + m)
Use for: grids with 0/1 cost, binary transformations, etc.

def dfs_iter(start, graph):

    visited = set()

    parent = {start: None}

    stack = [start]

    while stack:

        u = stack.pop()

        if u in visited:

            continue

        visited.add(u)

        for v, _ in reversed(graph[u]):  # reversed = DFS order similar to 

recursive

            if v not in visited:

                parent[v] = u

                stack.append(v)

    return visited, parent



Pattern: Connected Components (Undirected)

3. Shortest Paths
Dijkstra (non-negative weights)

Time: O(n + m)
Use for: connectivity, topological sort, cycle detection, etc.

def connected_components(nodes, graph):

    visited = set()

    comps = []

    for s in nodes:

        if s in visited:

            continue

        stack = [s]

        comp = []

        while stack:

            u = stack.pop()

            if u in visited:

                continue

            visited.add(u)

            comp.append(u)

            for v, _ in graph[u]:

                if v not in visited:

                    stack.append(v)

        comps.append(comp)

    return comps

import heapq

def dijkstra(start, graph):

    dist = {start: 0}

    parent = {start: None}

    pq = [(0, start)]  # (dist, node)

    while pq:

        d, u = heapq.heappop(pq)

        if d != dist[u]:  # stale entry

            continue

        for v, w in graph[u]:



Pattern: Reconstructing the Path

Bellman–Ford (handles negative weights, detects negative
cycles)

            nd = d + w

            if v not in dist or nd < dist[v]:

                dist[v] = nd

                parent[v] = u

                heapq.heappush(pq, (nd, v))

    return dist, parent

Time: O(m log n)
Use for: positive edge weights, single-source shortest paths.

def reconstruct_path(parent, target):

    if target not in parent:

        return None

    path = []

    cur = target

    while cur is not None:

        path.append(cur)

        cur = parent[cur]

    return path[::-1]

def bellman_ford(n, edges, start):

    # edges: list of (u, v, w)

    INF = float('inf')

    dist = [INF] * n

    dist[start] = 0

    for _ in range(n - 1):

        updated = False

        for u, v, w in edges:

            if dist[u] != INF and dist[u] + w < dist[v]:

                dist[v] = dist[u] + w

                updated = True

        if not updated:

            break

    # detect negative cycles

    in_neg_cycle = [False] * n

    for _ in range(1):  # one more relaxation is enough to detect

        for u, v, w in edges:



Floyd–Warshall (all-pairs shortest path)

4. Minimum Spanning Tree (MST) – Undirected,
Connected
Disjoint Set Union (Union-Find)

            if dist[u] != INF and dist[u] + w < dist[v]:

                dist[v] = -INF

                in_neg_cycle[v] = True

    return dist, in_neg_cycle

Time: O(nm)
Use for: negative edges, but no negative cycles reachable from source.

def floyd_warshall(mat):

    # mat[i][j] initialized with INF or weights, mat[i][i] = 0

    n = len(mat)

    for k in range(n):

        for i in range(n):

            if mat[i][k] == float('inf'):

                continue

            for j in range(n):

                if mat[k][j] == float('inf'):

                    continue

                if mat[i][k] + mat[k][j] < mat[i][j]:

                    mat[i][j] = mat[i][k] + mat[k][j]

    return mat

Time: O(n³)
Use for: dense graphs, all-pairs shortest paths, or when n  is small.

class DSU:

    def __init__(self, n):

        self.parent = list(range(n))

        self.rank = [0]*n

    def find(self, x):

        while self.parent[x] != x:

            self.parent[x] = self.parent[self.parent[x]]



Kruskal’s Algorithm

Prim’s Algorithm (with heap)

            x = self.parent[x]

        return x

    def union(self, x, y):

        xr, yr = self.find(x), self.find(y)

        if xr == yr:

            return False

        if self.rank[xr] < self.rank[yr]:

            xr, yr = yr, xr

        self.parent[yr] = xr

        if self.rank[xr] == self.rank[yr]:

            self.rank[xr] += 1

        return True

def kruskal_mst(n, edges):

    # edges: list of (w, u, v)

    edges.sort()

    dsu = DSU(n)

    mst_weight = 0

    mst_edges = []

    for w, u, v in edges:

        if dsu.union(u, v):

            mst_weight += w

            mst_edges.append((u, v, w))

    return mst_weight, mst_edges

Time: O(m log m)
Use for: static edge list; easy and fast.

import heapq

from collections import defaultdict

def prim_mst(start, graph, n):

    visited = [False]*n

    pq = [(0, start, -1)]  # (weight, node, parent)

    mst_weight = 0

    mst_edges = []

    while pq and len(mst_edges) < n - 1:



5. DAG Algorithms (Directed Acyclic Graphs)
Topological Sort (Kahn’s Algorithm – BFS with indegree)

        w, u, p = heapq.heappop(pq)

        if visited[u]:

            continue

        visited[u] = True

        mst_weight += w

        if p != -1:

            mst_edges.append((p, u, w))

        for v, vw in graph[u]:

            if not visited[v]:

                heapq.heappush(pq, (vw, v, u))

    return mst_weight, mst_edges

Time: O(m log n)

from collections import deque, defaultdict

def topo_sort(nodes, graph):

    indeg = defaultdict(int)

    for u in nodes:

        for v, _ in graph[u]:

            indeg[v] += 1

    dq = deque([u for u in nodes if indeg[u] == 0])

    order = []

    while dq:

        u = dq.popleft()

        order.append(u)

        for v, _ in graph[u]:

            indeg[v] -= 1

            if indeg[v] == 0:

                dq.append(v)

    if len(order) != len(nodes):

        raise ValueError("Graph has a cycle")

    return order



Longest Path in a DAG (weights can be positive)

6. Strongly Connected Components (SCC) – Directed
Graph
Kosaraju’s Algorithm (two DFS passes)

Use for: course scheduling, DP on DAG, dependency resolution.

def longest_path_in_dag(nodes, graph, topo_order, src):

    # graph: u -> list of (v, w)

    dist = {u: float('-inf') for u in nodes}

    dist[src] = 0

    for u in topo_order:

        if dist[u] == float('-inf'):

            continue

        for v, w in graph[u]:

            if dist[u] + w > dist[v]:

                dist[v] = dist[u] + w

    return dist

from collections import defaultdict

def kosaraju_scc(nodes, graph):

    # build reverse graph

    rgraph = defaultdict(list)

    for u in nodes:

        for v, _ in graph[u]:

            rgraph[v].append(u)

    visited = set()

    order = []

    # 1st pass: order by finish time

    def dfs1(start):

        stack = [start]

        it_stack = [iter(graph[start])]

        visited.add(start)

        while stack:

            u = stack[-1]

            for v, _ in it_stack[-1]:



7. Lowest Common Ancestor (LCA) – Tree Pattern
Preprocessing via Binary Lifting

                if v not in visited:

                    visited.add(v)

                    stack.append(v)

                    it_stack.append(iter(graph[v]))

                    break

            else:

                order.append(u)

                stack.pop()

                it_stack.pop()

    for u in nodes:

        if u not in visited:

            dfs1(u)

    # 2nd pass: on reversed graph

    visited.clear()

    comps = []

    def dfs2(start):

        stack = [start]

        comp = []

        visited.add(start)

        while stack:

            u = stack.pop()

            comp.append(u)

            for v in rgraph[u]:

                if v not in visited:

                    visited.add(v)

                    stack.append(v)

        return comp

    for u in reversed(order):

        if u not in visited:

            comps.append(dfs2(u))

    return comps

Use for: condensation of graph into DAG, finding cycles, 2-SAT.



import math

from collections import deque

def build_lca(root, n, tree):

    LOG = math.ceil(math.log2(n+1))

    up = [[-1]*n for _ in range(LOG)]

    depth = [0]*n

    # BFS to compute depth and immediate parent

    dq = deque([root])

    parent = [-1]*n

    parent[root] = -1

    while dq:

        u = dq.popleft()

        for v, _ in tree[u]:

            if v == parent[u]:

                continue

            parent[v] = u

            depth[v] = depth[u] + 1

            dq.append(v)

    for v in range(n):

        up[0][v] = parent[v] if parent[v] != -1 else v

    for k in range(1, LOG):

        for v in range(n):

            up[k][v] = up[k-1][up[k-1][v]]

    return up, depth, LOG

def lca(u, v, up, depth, LOG):

    if depth[u] < depth[v]:

        u, v = v, u

    # Lift u up

    diff = depth[u] - depth[v]

    for k in range(LOG):

        if diff & (1 << k):

            u = up[k][u]

    if u == v:

        return u

    # Lift both up until parents differ

    for k in reversed(range(LOG)):

        if up[k][u] != up[k][v]:



8. Common Graph Problem Patterns
1. Grid as Graph
Index (r, c)  as node, edges to neighbours.

Apply BFS/DFS/Dijkstra over (r, c)  states.

2. Graph + State (multi-dimensional BFS/shortest path)

Node is (position, extra_state)  – e.g., (node, used_coupon) .

            u = up[k][u]

            v = up[k][v]

    return up[0][u]

Preprocessing: O(n log n)
Query: O(log n)

def grid_neighbors(r, c, R, C):

    for dr, dc in [(-1,0),(1,0),(0,-1),(0,1)]:

        nr, nc = r+dr, c+dc

        if 0 <= nr < R and 0 <= nc < C:

            yield nr, nc

from collections import deque

def bfs_state(start_state, transitions):

    # transitions(state) -> iterable of next_state

    dq = deque([start_state])

    dist = {start_state: 0}

    while dq:

        s = dq.popleft()

        for ns in transitions(s):

            if ns not in dist:

                dist[ns] = dist[s] + 1



3. Topological DP Pattern

4. Cycle Detection

9. Quick “When to Use What” Table

                dq.append(ns)

    return dist

Compute topo_order .

Process in topological order, update DP for outgoing edges.

def dag_dp(nodes, graph, topo_order, base):

    dp = {u: base(u) for u in nodes}

    for u in topo_order:

        for v, w in graph[u]:

            dp[v] = max(dp[v], dp[u] + w)

    return dp

Undirected: if you see a visited neighbour that is not parent, there is a cycle.

Directed: DFS with 3-color marking (0 = unvisited, 1 = visiting, 2 = done).

def has_cycle_directed(nodes, graph):

    color = {u: 0 for u in nodes}  # 0=unvisited,1=visiting,2=done

    def dfs(u):

        color[u] = 1

        for v, _ in graph[u]:

            if color[v] == 1:

                return True

            if color[v] == 0 and dfs(v):

                return True

        color[u] = 2

        return False

    return any(color[u] == 0 and dfs(u) for u in nodes)



Problem Type Typical Algorithm / Pattern

Reachability / any path? DFS / BFS

Shortest path, all edges same weight BFS / multi-source BFS

Shortest path, non-negative weights Dijkstra (heap)

Shortest path, may contain negative 
weights

Bellman–Ford / Johnson / DP on DAG

All-pairs shortest path, small dense graph Floyd–Warshall

Network with 0/1 edge weights 0–1 BFS

Grouping connected nodes (undirected) DFS/BFS components / DSU

Minimum spanning tree (undirected) Kruskal (DSU) / Prim (heap)

Scheduling / ordering with dependencies Topological Sort

Strongly connected clusters in directed 
graph

Kosaraju / Tarjan SCC

LCA / distance queries in tree Binary Lifting / Euler Tour + RMQ

Grid mazes / maps BFS / Dijkstra on grid graph

Two or more constraints / toggles State-space BFS or Dijkstra on (node, 
state)


